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Abstract 

Galaxy redshift surveys provide a distorted picture of the universe due to the non-Hubble com- 
ponent of galaxy motions. By measuring such distortions in the linear regime one can constrain 
the quantity p = nQs/b h w ere R is the cosmological density parameter and b is the (linear) bias 
factor for optically-selected galaxies. In this paper we apply two techniques for estimating p from 
the Stromlo-APM redshift survey - (1) measuring the anisotropy of the redshift space correlation 
function in spherical harmonics and (2) comparing the amplitude of the direction-averaged red- 
shift space correlation function to the real space correlation function. We test the validity of these 
techniques, particularly whether the assumption of linear theory is justified, using two sets of large 
N-body simulations. We find that the first technique is affected by non-linearities on scales up to 
N 30h-‘Mpc. The second technique is less sensitive to non-linear effects and so is more useful for 
existing redshift surveys. 

The Stromlo-APM survey data favours a low value for p, with ,0 5 0.6. A bias parameter b E 2 
is thus required if R E 1. However, higher-order correlations measured from the APM galaxy 
survey (Gaztafiaga and Frieman 1994) indicate a low value for the bias parameter b z 1, requiring 
that R 5 0.5. We also measure the relative bias for samples of galaxies of various luminosity and 
morphological type and find that low-luminosity galaxies are roughly three times less biased than 
L’ galaxies. For the galaxy population as a whole, we measure a real space variance of galaxy 
counts in 8h-IMpc spheres of (cr,“), = 0.89 * 0.05. 

Subject headings: galaxies: clustering - galaxies: distances and redshifts - galaxies: fundamental 
parameters - large-scale structure of universe - surveys 
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1 Introduction 

Galaxy redshift surveys can provide some of the most important constraints on theories of large- 
scale structure, but they must be analysed with care. For pure, unperturbed Hubble flow, galaxy 
clustering measured in redshift space would be isotropic and identical to that measured in real space. 
However, in practice, peculiar velocities will distort the redshift space correlation function. Since the 
amplitude of peculiar velocities depends on the cosmological density parameter R, measurements 
of this distortion can constrain the value of R. On small scales, the effect of peculiar velocities is 
to elongate clusters of galaxies along the line of sight in redshift space, leading to the well known 
‘fingers of God’. However, on large scales, coherent bulk flows dominate the peculiar velocity 
field resulting in a compression in the clustering pattern along the line of sight. This effect is 
easily seen in the Stromlo-APM Survey as shown in Figure 1, which is a contour plot of the full 
redshift space correlation function ((0,~) as a function of components of separation parallel (7r) 
and perpendicular (0) to the line of sight. A compression of the low-amplitude < contours in the 1 
direction compared with the D direction is clearly visible for x 2 lOh-lMpc. (We assume a Hubble 
constant of Ho = 1OOh km/s/Mpc.) 

This large-scale anisotropy in redshift space clustering is most naturally expressed in terms of the 
power spectrum. Kaiser (1987) h as shown that in the linear regime of gravitational instability 
models, the power spectra in redshift space, P,(k) and real space P,(k) are simply related by 

P,(k) = (1 t ,@;)‘P,(k), 

where jLk is the cosine of the angle between the wavevector k and the line of sight. The amplitude of 
the distortion is determined by the parameter p = f(R)/b, where j(Q) M nos is the dimensionless 
growth rate of growing modes in linear theory. The bias parameter b relates the fluctuations in galaxy 
density to the underlying mass density in the linear regime, 6, = b6, for linear bias. Several practical 
methods for measuring ,f3 have recently been applied: measuring the anisotropy of the correlation 
function (Hamilton 1992, 1993a; Fisher et al. 1994a), the anisotropy of the power spectrum (Cole, 
Fisher and Weinberg 1994,1995; Tadros and Efstathiou 1996) and spherical harmonics of the density 
field (Fisher et al. 1994b; Heavens and Taylor 1995). 

We follow the correlation function approach in this paper. ’ Hamilton (1992) has pointed out that 
the cosine j.& in Fourier space transforms to an operator in real space: 

m, P) = P t ~(~/~~)“(v2)-‘1”~~r(~), (2) 

where (a”)-’ denotes the inverse Laplacian operator and p = k.i is the cosine angle between pair 
separation r and the line of sight z. The redshift space correlation function &(T, ,x) is conveniently 
expressed as a sum of spherical harmonics involving the first three even-order Legendre polynomials, 
(the odd- or er d h armonics vanish by pair-exchange symmetry) 

Hamilton gives expressions for the [l(r) in terms of integrals over &(r) [his equations (6)-(g)]. 

To solve the inverse problem, i.e. to go from redshift space clustering to real space clustering, 
Hamilton integrates the equations describing the real and redshift space correlation functions over 

‘For a power spectrum analysis of the Stromlo-APM survey, see Tadros and Efstathiou (1996). 
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planes normal to the vector r at separation 7, expands in spherical harmonics and differentiates with 
respect to T. He thereby obtains an explicit expression for ,f3 and &(v+) in terms of the harmonics 
&(T) of the redshift space correlation function. Further volume averaging to minimize cancelation of 
terms finally results in an equation for 0 involving the 0th and 2nd order harmonics of the redshift 
space correlation function: 

(4) 

One can also write a similar expression involving the 2nd and 4th order harmonics, but in practice, 
the 4th order harmonic is too noisy and too strongly affected by non-linear effects to be useful. 

As well as causing anisotropy in redshift space, large-scale streaming motions also produce an ampli- 
fication in the direction-averaged redshift space correlation function on large scales. For fluctuations 
in the linear regime, the direction-averaged redshift space correlation function t(s) and the real space 
correlation function t(r) are related by (Kaiser 1987) 

((s) M (1 t $3 + $2) W (5) 

The large uncertainty in the value of fi hinders comparison of E( ) s with real space predictions of 
galaxy clustering from various models (see, for example, Loveday et al. 1992a). In a recent paper 
(Loveday et al. 1995, hereafter Paper 2), we estimated the real-space correlation function of optically- 
selected galaxies by cross-correlating galaxies in the sparse-sampled Stromlo-APM Redshift Survey 
with the fully-sampled, parent APM Galaxy Survey. This projected cross-correlation function is 
unaffected by redshift-space distortions and may be stably inverted to give the real-space correlation 
function e(r). Moreover, the large number of cross-pairs enables clustering to be measured to smaller 
scales than using the redshift survey data alone. If both t(r) and t(s) can be reliably measured in 
the linear regime then the value of ,f? can be constrained using equation (5). 

We assess the relative merits of these two methods of estimating /3 (equations 4 and 5) by analyzing 
N-body simulations. The two sets of simulations, of low and high density, are designed to be similar 
to the Stromlo-APM data in both the clustering and dynamics of the galaxies. In particular, we 
estimate the sensitivity of the methods to non-linear dynamics of the galaxy distribution. 

The above expressions (l-5) assume a plane-parallel approximation for peculiar displacements. In 
order to approximate this ideal in our analyses, we use only those pairs of galaxies separated by 
less than 50 degrees on the sky. This rejects about 20% of galaxy pairs, and, as Cole et al. (1994) 
have demonstrated, will limit deviations from the plane-parallel approximation to no more than a 
5% bias in the estimated value of p. 

Throughout the paper, we use r to denote real space separations and s to denote separations in 
redshift space. Error bars on measurements from survey data are estimated using the bootstrap 
resampling technique (Barrow, Bhavsar and Sonoda 1984) with nine bootstrap resamplings of the 
survey. Error bars for simulations are determined from the variance between ten independent 
realizations of the low-density model and nine realizations of the high-density model. 

The layout of the paper is as follows. The Stromlo-APM survey data and the N-body simulations 
are described and compared in §2. In $3 we test the estimators for ,0 using the simulations. In $4 
we apply the estimators to the Stromlo-APM data and also present the relative bias and redshift 
space distortions for different galaxy types. Finally, our conclusions are given in $5. 
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2 Survey Data and N-Body Simulations 

Both equations (4) and (5) assume that linear theory is valid on scales on which [ can be reliably 
measured. It is important to test this assumption of linearity before using these equations to estimate 
p. We do this by analyzing two ensembles of CDM-like N-body simulations. In this section we 
describe the Stromlo-APM survey data and the simulations, and show that the simulations mimic 
the observed clustering and dynamics of the galaxy distribution quite faithfully. 

2.1 Stromlo-APM Survey Data 

The Stromlo-APM redshift survey consists of 1787 galaxies with bJ 5 17.15 selected randomly at a 
rate of 1 in 20 from the APM (Automated Plate Measuring) galaxy survey (Maddox et al. 1990a,b). 
The survey covers a solid angle of 1.3 sr (4300 square degrees) in the south galactic cap. The APM 
magnitudes have been calibrated and corrected for photographic saturation using CCD photometry 
as described by Loveday et al. 1992b (hereafter Paper 1). An approximate morphological type was 
assigned to each galaxy by visually inspecting the images on the United Kingdom Schmidt Telescope 
(UKST) survey plates. Redshifts were obtained with the Mount Stromlo-Siding Spring Observatory 
(MSSSO) 2.3m telescope at Siding Spring. Measured radial velocities were transformed to the local 
group frame using ‘u = v + 300 sin(Z) cos(b) and we assumed A = 0, qo = 0.5 and Ho = 100 
km s-‘Mpc-’ with uniform Hubble flow in calculating distances and absolute magnitudes. We 
adopt lc-corrections for different morphological types in the bJ system as described by Efstathiou, 
Ellis and Peterson (1988). M ore details about the survey are given in Paper 1 and the construction 
of the survey is described in full by Loveday et al. (1996). 

2.2 Simulations 

We use the two sets of N-body simulations described by Croft and Efstathiou (1994); a low-density 
CDM model with Rc = 0.2 and a cosmological constant (LCDM) and a mixed dark matter model 
with no = 1 (MDM). W e analyze ten realizations of the LCDM model and nine realizations of 
the MDM model. These simulations combine a large volume (box length = 300h-lMpc) with 
a force resolution of w 80h-‘kpc for lo6 particles, and so can be used to generate reasonable 
approximations to our redshift survey. Both sets of N-body simulations have enhanced large-scale 
power compared with the standard CDM model; the LCDM model by having I’ = Rob = 0.2 and 
a nonzero cosmological constant X = A/(3H$ = (1 - no) = 0.8 and the MDM model by having 
R, = 0.3 from neutrinos and h = 0.5. 

In order to generate mock Stromlo-APM catalogues from the simulations, ‘galaxies’ were selected 
within the APM area and with the Stromlo-APM selection function (Paper l), such that they 
traced the mass particles in an unbiased way. This procedure produces mock catalogues of on 
average 33,500 ‘galaxies’ each. We select a subset of 1 in 20 galaxies at random from each simulated 
catalogue in order to mimic the sparse sampling strategy of the Stromlo-APM survey. The intrinsic 
value of /3 for the simulations is, by construction, p = 0.38 for the LCDM simulations and p = 1 
for the MDM simulations. 
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2.3 Galaxy Clustering in Real and Redshift Space 

We estimate the redshift-space correlation functions from the survey and the simulations using the 
density-independent estimator for t(s) discussed in Paper 2, 

1 + [(s) = wss(s>w&> 
h(412 * 

Here wgg(s>, q&s) an d w?,(s) are the summed products of weights of galaxy-galaxy, galaxy-random 
and random-random pairs respectively. Note that the relative densities of galaxy and random points 
measured at separation s are automatically accounted for by this estimator - there is no need to 
assume an overall galaxy density ns. This estimator, due to Hamilton (1993b), is insensitive to 
variations in galaxy density and provides a very stable estimate of t(s). 

To calculate the real-space correlation function c(r), we measure the projected cross-correlation 
function between the redshift data and the angular data from the fully-sampled parent catalogue, 

z(C’) = /‘” t(dG)dAy, 
--oo 

where the integral extends over all line-of-sight separations Ay for pairs of galaxies with given 
projected separation cr = ye (0 is the angular separation and y is the distance to the galaxy of 
known redshift). This projected function is inverted numerically to give an estimate of [(T), which 
is unaffected by redshift-space distortions. See Saunders et al. (1992) and Paper 2 for a detailed 
description of this estimator. 

In Figure 2 we compare the clustering of galaxies in (a) redshift space and (b) real space for the 
Stromlo-APM survey and for the N-body simulations. The error bars show the scatter between 
nine bootstrap resamplings of the survey. The measured variance between the different realizations 
of the simulations yields similar error bars, which are not plotted here for the sake of clarity. We 
see that the simulations match the observed clustering of galaxies reasonably well on large scales, 
although on small scales the LCDM models overpredict and the MDM models underpredict the 
observed clustering. The plateau in the real-space clustering of Stromlo-APM galaxies at T M 20- 
30h-lMpc appears to be significant given the size of the random errors. However, as discussed in 
Paper 2, [( T m erred from inversion of the projected cross-correlation with the parent catalogue ) ’ f 
is subject to systematic error beyond T M 20h-lMpc, although neither of the simulations shows 
any feature here. It is clear that we will need to check that we obtain consistent estimates of p on 
different scales if our results are to be completely trustworthy. 

We have fit power-laws to the correlation functions plotted in Figure 2. We fit over the range 
1.5 < s < 30 h-lMpc in redshift space and 0.2 < T < 20 h-rMpc in real space. The parameters to 
these power-law fits are given in Table 1. 

2.4 Galaxy Peculiar Velocities 

If the N-body simulations are to be used to check for non-linear effects in the real data, then it is 
important to compare the amplitude of small-scale, virialized motions in the simulations with those 
in the data. By comparing estimates of clustering in redshift space and real space, one can constrain 
the galaxy peculiar velocity distribution f(w) (eg. Bean et al. 1983, Davis and Peebles 1983). The 
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redshift space correlation function ((a, x) is given by convolving the real space correlation function 

((T) with f(w), 
1+ &,7r) = Jrn [l t ((T)]f[W3 t HoK(l -I- EYT3ldW3, 

-00 
(8) 

(Bean et al. 1983), where T 2 = cr2 $ ~32, ~3 = x - w3/Ho (the subscript 3 denotes the line-of-sight 
component of a vector quantity) and (w) x -H&( 1 + 0-l ~3 is the mean streaming velocity of 
galaxies at separation r. 

We have measured <(a,~) in four CT bins each of width 2h-lMpc centred on 1, 3, 5 and 7h-lMpc 
- Figures 3a, b and c for the data, LCDM and MDM simulations respectively. We have calculated 
the best-fit rms peculiar velocity, (w2)lj2, for three models for f(w), a Gaussian, 

a I4 3/2 distribution, 

f(w) = &(;2)‘ia exp 
2 

( ) 2;:s) ’ 

and an exponential distribution, 

-l&l 
f(w) = 42)‘,2 exp (w2)1/2 * ( ) 

(9) 

(10) 

(11) 

The optimum value of (w ) 2 Ii2 for each distribution was calculated by maximizing the likelihood 

t = n [2?rVar(t( 0, 7r)}]-‘/2 exp 
r-bins 

, 1 (12) 

where tO(cr,~) is the observed redshift space correlation function, Var{[(a, x)} is the observed 
variance in [O((T, z) from bootstrap resampling (or from different realizations of the simulations) and 
[P(cJ,x) is the predicted correlation function from (8). We use the measured t(~) from Figure 2(b) 
in equation (8) and substitute p = 0.38 and p = 1 for the LCDM and MDM simulations respectively 
and assume ,0 = 0.5 for the Stromlo-APM data (see Fj4). The continuous, dashed and dot-dashed 
lines in Figure 3 are the best fit curves for the Gaussian, ]w13i2 and exponential models respectively. 
The best-fit values of (w ) 2 ‘I2 together with 95% confidence limits as estimated from likelihood ratios 
are given in Table 2. 

For the survey data, we see that the exponential velocity distribution model gives a marginally 
better fit to the observations than the ]w]~/~ or Gaussian distributions. There is no obvious trend 
of (w2)r/2 with separation B, the 95% confidence range for (w2)ri2 is roughly 100-1100 km s-r, 
with a maximum likelihood value around 500 km s-l. Note that our survey does not provide a 
strong constraint on small scale peculiar velocities simply due to the sparse-sampling strategy we 
have employed. It would be interesting to compare I f or the morphological and luminosity- 
selected subsamples defined in Paper 2, but unfortunately, the shot-noise errors on ((0, rr) for these 
subsamples are too large to test for variation of (w~)~/~ with galaxy type or luminosity. 

For both sets of simulations, the exponential model provides the best fit for the smallest u bin 
(cr < 2h-lMpc) but this model fairs less well at larger projected separation. In fact none of the 
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models for f(w) provides a very good fit to the simulations, which probably explains why (w2)li2 
is being overestimated for the simulations at small (T. (Using the position and velocity information 
for each galaxy in the simulations yields direct measurement of rms peculiar velocities of 350 km/s 
and 510 km/s for the LCDM and MDM model respectively.) Our fits to (w2)li2 in Table 2 are 
giving close to the expected values for u x 5h-lMpc. We conclude that the LCDM model has 
slightly smaller peculiar velocities than the data, whereas peculiar velocities in the MDM model are 
comparable to those measured from the Stromlo-APM data. 

3 Testing Estimators for ,f3 

In the preceding section we showed that the simulations have comparable two-point clustering 
statistics and small-scale peculiar velocities to the survey data. One might naively expect that if 
the simulations obey linear theory at a certain scale then linear theory should also be applicable to 
the survey data on that same scale. However, as seen below, we find that the MDM simulations 
show evidence for non-linear effects to much larger scales than the LCDM simulations, despite the 
relatively small difference in small-scale peculiar velocities. As pointed out by Fisher and Nusser 
(1996), the departure from linear theory is due to non-linear streaming (as modelled, for example, 
by the Zel’dovich approximation), and not just due to virialized motions. 

In this section we investigate the scales on which linear theory is obeyed by the simulations, insofar 
as one can estimate p from the anisotropy of clustering in redshift space and from the amplification 
in t(s) in redshift space compared to real space. 

3.1 Anisotropy of <(cT,T) 

We estimate the anisotropy in [((T,?T) as follows. The redshift space spherical harmonics &I(r) in 
equation (4) are given by an integral over the full redshift space correlation function t(~, p), 

22-t-l l 
b(r) = - 2 J -1 I(? P)fi(P)dP, (13) 

where 4(p) is the Ith order Legendre polynomial. We can measure [(~,p) by comparing the 
observed, weighted sum of galaxy pairs W&(T, p) at separation r and direction cosine to line of sight 
p, with the expected background bgr(r,p) f or an isotropic, unclustered distribution. The line of 
sight direction is defined as the bisector in angle of each pair. 

Since 9(p) is an odd function for odd I and an even function for even 1, the odd-l harmonics vanish 
and the even-l harmonics are given by 

(14) 

Here we have replaced the integral over [(r, p) with respect to p by the weighted and appropriately 
normalised sum of PI(~) for all galaxy pairs at separation r. The wiwj are the products of the 
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weights of each galaxy in the pair, given by equation (1) of Paper 2 and &-, is the Kronecker delta 
symbol, equal to unity for I = 0, zero otherwise. The background bgr(r,p) is obtained by linear 
interpolation in p from a pre-calculated look-up table. We do not interpolate between r-bins, since 
the t(r) are calculated in the same separation bins in which bgr(r,p) is tabulated. This look-up 
table is generated in ten fixed steps in A log r and A/.L using a large catalogue of random points 
with the same selection function and within the same boundaries as the data, and using the same 
weighting scheme, 

bgr(r,p) = ‘y((rr’:;‘. (15) 
7-T , 

Here y&, cl) and w,,(r,p) are the summed weights of galaxy-random and random-random pairs 
respectively. This definition of the background does not require one to estimate the mean density of 
the data and random catalogues to normalize I; instead the normalisation is determined using only 
those galaxies at separation T and cosine direction /.L. Such an estimator gives more stable estimates 
of t on large scales than traditional estimators (Hamilton 1993b; Paper 2). In Figures 4a and b 
we plot the C( ) r measured from the LCDM and MDM simulations respectively as the points with 
error bars. Also shown by the curves are the linear-theory predictions for the [l(~) using equations 
(6)-(g) of Hamilton (1992). 

For the LCDM model (Figure 4a), we use the power spectrum of Efstathiou, Bond and White 
(1992) with I’ = 0.2 and p = 0.38. In this theory, I = Rob determines the shape of the real-space 
correlation function, and ,0 determines the redshift-space distortions. Since the simulations are 
unbiased, ,f3 = Sl, ‘a6 = 0.38. We see that the direction-averaged correlation function to measured 
from the simulations agrees well with linear theory on scales as small as 2h-lMpc. Non-linearity is a 
far more severe problem for the quadrupole ((2) and hexadecapole (Ed) harmonics. The quadrupole 
harmonic is expected to be negative in the linear regime (Hamilton 1992) and so we plot -[z in 
Figure 4. The measured (2 is in fact positive on scales r 2 15h-lMpc suggesting that non-linear 
effects dominate [z on these scales. The amplitude of (2 is lower than that predicted by linear 
theory until T M 30h-lMpc, suggesting that non-linearity may affect (2 out to these scales. Beyond 
N 55h-lMpc the data is too noisy to measure (2 reliably. The hexadecapole harmonic (4 has 
an amplitude on scales T 2 15h-lMpc exceeding the linear theory prediction by several orders of 
magnitude (in fact it is comparable to the direction-averaged correlation (0) and on larger scales, 
it’s measurement is too noisy to be useful. Equation (4) gives physically reasonable estimates of 
the quantity p over a range of scales 21-42 h-lMpc: p = 0.06 f 0.43, 0.47 f 0.48 and 0.02 f 0.35 
respectively at separations of r M 21,30 and 42 h-lMpc. Comparison with the linear theory curves 
suggests that the first of these estimates (at T M 2lh-rMpc) is probably biased low by non-linearity, 
but the second two estimates appear to be in the linear regime. 

For the MDM model (Figure 4b), we use the power spectrum of Klypin et al. (1993). Again, we see 
that the direction-averaged correlation function to agrees very well with linear theory over all scales 
measured but that [2 is only in reasonable agreement for scales r ;2 15h-lMpc. The measured 
errors for (4 are very large on all scales, so we do not show the (4 estimates on this plot. At scales 
r M 21, 30 and 42 h-lMpc, equation (4) provides estimates of fl of 0.30 f 0.31, 0.39 f 0.44 and 
0.61 f 0.86, all of which underestimate the true value p = 1. 



3.2 Amplification of t(s) 

We have seen in the previous subsection that anisotropies in the redshift space correlation function 
only agree with the linear theory prediction on very large scales, where measurements from existing 
galaxy catalogues are too noisy to usefully constrain p. In this subsection, we investigate how well 
one might measure p from the amplifzcation of the direction-averaged correlation function in redshift 
space compared to real space. 

The ratio [(s)/<( ) r is subject to large random fluctuations in the linear regime where t(r) is small. 
Therefore, when estimating p from equation (5) it is desirable to either fit to p measured over a 
range of scales or alternatively to smooth the [ estimates before taking their ratio. A common way 
of smoothing t(r) is to take its volume integral 

J3(r) = 1’ z2t(z)dz. (16) 

With an N-body simulation, one has the advantage of being able to estimate the real space corre- 
lation function directly by using the real space locations of the simulation galaxies in (6)’ as well 
as via inversion of the projected correlation function (7). The former estimate of t(r) is useful 
for studying effects of non-linearity in the simulations, whereas the latter, noisier, estimate gives 
a more realistic assessment of what we can hope to measure from real data. We have used the 
ratios ,$(s)/~(T) and &(s)/&(r) measured with both [( ) r es imates in equation (5) to estimate p t 
on a range of scales. These estimates are presented in Figures 5 and 6 for the LCDM and MDM 
simulations respectively. 

For the LCDM simulations (Fig. 5)’ we see that the ratio [(s)/[(r) (open symbols) appears to 
converge to give the correct value of /3 by a scale r M 5h-‘Mpc, although the estimates are biased 
a little high. Beyond r x 20h-rMpc, the measured correlation functions are too noisy to usefully 
constrain /3. We have calculated a maximum-likelihood fit to the four data points between 5 and 16 
h-rMpc, and find that /3 = 0.56 with a 95% confidence range 0.44-0.68. The ratio Js(s)/Js(r) (solid 
symbols) is biased low by non-linear dynamics to larger scales (T M 20h-lMpc), but by these scales 
is providing an almost unbiased and low-noise estimate of the true p. The point at r = 17.8h-rMpc 
yields p = 0.29 f 0.07 (one sigma error). The results using t(r) and .73(r) inferred from inversion of 
the projected correlation function (Fig. 5b) are only a little noisier than those determined from the 
direct estimates of [(T) and Jo. Fitting to & over the same four measurements provides p = 0.58 
with a 95% confidence limit 0.41-0.76 and p~~(17.8) = 0.36 f 0.13. 

For the MDM simulations (Fig. S), we see that the ratio [(5)/[(r) (open symbols) does not converge 
so readily to the correct value of p; it crosses p = 1 at r M lOh-‘Mpc but then tends to overshoot 
slightly. Again, beyond r x 20h-‘Mpc, the measured correlation functions are too noisy to usefully 
constrain p. A fit to & using the two measurements in the range lo-16 h-lMpc provides the 
estimates p = 1.41 (1.00-1.83) and 0 = 0.93 (0.72-1.15) for th e d irect and inverted estimates of 
t(r) respectively. The ratio J~(s)/J~(T) (solid y b 1 ) s m o s converges to /3 = 1 by scales T M 20h-rMpc; 
estimates on larger scales tend to overestimate p, but most are within N la of p = 1. We measure 
p~~(17.8) = 1.02 f 0.16 and p~~(17.8) = 0.85 f 0.17 from Figs. 6 (a) and (b) respectively. 

One could consider using alternative, smoothed measures of the galaxy clustering which are less 
affected by small-scale peculiar velocities than J3. An example would be a modified form of the 
J3 integral in which the lower limit of integration is set at, say, rG,., = 5h-lMpc. This was tried, 
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and while the contribution from peculiar velocities is indeed suppressed, the modified estimator is 
subject to larger random fluctuations than J3 as defined in (16). 

3.3 Conclusions from Simulations 

We have analysed two ensembles of CDM-like N-body simulations, one a low density (LCDM, 
Ro = 0.2) model, and one high density (MDM, R. = 1). Both give a reasonable match to the real 
and redshift space correlation functions measured from the Stromlo-APM Redshift Survey and have 
comparable peculiar velocities (w 2 ‘i2. We used these simulations to investigate the practicality ) 
of measuring the quantity p = Qza6/b from (a) th e anisotropy and (b) the amplification of the 
measured galaxy clustering in redshift space. 

For the LCDM simulations, we find that the 2nd and 4th order spherical harmonics of the redshift 
space correlation function are severely affected by non-linearities to scales r N 30h-lMpc, and so 
one needs a reliable measurement of the (1 on scales r 2 30h-rMpc in order for linear theory to 
be applicable. This is in agreement with the Fourier-space harmonic analysis of Cole et al. (1994). 
The situation is even worse for the MDM simulations, where the 2nd order spherical harmonic 
underestimates p on all scales at which it can be measured reliably. 

By contrast, the amplitude of the direction averaged correlation function [e is relatively weakly 
affected by non-linearity. For the LCDM model non-linear effects become unimportant on much 
smaller scales, T N 5h-‘Mpc for t measures and r N 20h-lMpc for J3 measures. The MDM 
simulations effectively agree with linear theory by scales of r M lOh-lMpc for the [ measures and 
by T x 20h-lMpc for the J3 measures. 

Thus the more practical method for determining /3 from current redshift surveys is by comparison of 
the direction-averaged redshift-space correlation function with the real-space correlation function. 
By using the J3 volume integral over [, one decreases the random noise in p, at the expense of 
pushing out the effects of non-linearity to larger scales. In practice it will be worthwhile to estimate 
/3 from both ~(S)/[(T) and Js(s)/Js(~). We expect the J3 ratio to give the less noisy results. 

4 Results from Stromlo-APM Survey 

4.1 Constraints on p 

We have measured the spherical harmonics cl(s) of the Stromlo-APM redshift space correlation 
function in the same way as for the simulations ($3.1). Th e results are shown as the points with 
error bars in Figure 7. The curves show the linear theory predictions for LCDM (light lines) and 
MDM (heavy lines). W e see pronounced effects of non-linearity and very large error bars on the 
(2 harmonics on scales smaller than 20h-rMpc. The direction-averaged correlation function &, 
is well matched by the LCDM linear theory prediction on all scales. The MDM model slightly 
under-predicts [u on small and large scales (cf Fig. 2). The measured (2 harmonics agree quite well 
with the LCDM linear theory prediction on scales 20-50 h-‘Mpc whereas the MDM prediction is 
too high. In other words, we see evidence for smaller redshift space distortions than expected in 
an unbiased Ro = 1 model. On scales of 21, 30 and 42 h-‘Mpc, the estimated values of p are 
0.41 f 0.17, -0.03 f 0.29 and 0.23 f 0.31 respectively. 
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From our analysis of simulated galaxy catalogues in the previous section, we expect the ratios of 
the direction-averaged clustering in redshift space and real space to give more reliable estimates of 
p. In Figure 8, we plot our estimates of /3 from the redshift survey, as determined from the ratio 
[(s)/f(r) (open symbols) and from the ratio Js(s)/Js(r) (solid symbols). The error bars in this figure 
are determined from the scatter between estimates of p for each of the nine bootstrap resampled 
surveys, and are in reasonable agreement with the scatter found between different realizations of 
the simulations (Figs. 5 and 6) in the linear regime. There is a wide scatter in the p estimates 
from the [ ratios around lo-20 h-*Mpc, but the J3 ratios give consistent results over this range, 
appearing to favour p x 0.2-0.5. Even the point giving the largest value of /3 @I = 0.48 f 0.12 at 
r = 17.8h-lM pc ) f avours fi < 1. It is interesting to note that in both sets of simulations, the J3 
ratio at this scale provides an estimate of ,0 within 1 sigma of the correct value. Therefore /3 ,$ 0.6 
would seem to be a reasonable upper limit allowed by our analysis and we conclude that either 
Ro < 1 or that galaxies are significantly biased tracers of the mass distribution, b 2 2. 

As an aside, we note that the small-scale, non-linear, behaviour of 0 for the Stromlo-APM survey 
is markedly different to that of the simulations, which have a systematically negative p and smaller 
errors on scales r 5 5h-lMpc. We are not overly concerned by this as the simulations provide a 
relatively poor fit to observed clustering on small scales and we know that equation (5) is clearly 
not to be trusted in regimes in which it predicts a negative p! 

4.2 Disentangling R and b 

Ideally, of course, one would like to know the values of the density parameter R and the bias 
parameter b individually. Cole et al. (1994) h ave discussed how it may be possible with future 
redshift surveys to separate the determination of R and b by studying the scaling of non-linear 
effects. An alternative approach is the study of high order correlations to constrain the (possibly 
non-linear) biasing model using weakly non-linear perturbation theory. Gaztanaga and Frieman 
(1994) have used high order moments of APM galaxies to constrain biasing models. To be consistent 
with non-linear perturbation theory, one should allow the possibility of non-linear bias, in which 
case second- and third-order non-linear bias coefficients can be chosen which match the observed 
high order correlations. However, the observations are very well fit by an unbiased, low-density 
CDM model with b x 1. Applying Occam’s razor, this seems the more natural solution. 

4.3 Relative Biasing of Different Galaxy Types 

Despite the uncertainties in the value of galaxy bias with respect to the mass, one may study 
the relative bias of galaxies of different type by comparing their clustering properties. There are 
two independent ways to measure the relative bias factors: (1) by comparing real-space clustering 
in the linear regime and (2) by measuring the redshift space amplification of clustering due to 
equation (5). One thus has a consistency check on measurements of p and relative bias parameters. 
We have already compared the clustering of galaxies of different luminosity and morphological 
type in Paper 2. In that paper we concentrated on the small-scale (power-law) regime of galaxy 
clustering. Here we study clustering in the linear regime. We analyse galaxy subsamples from the 
Stromlo-APM survey of low, middle and high luminosity, and of early and late type. These galaxy 
samples are defined in Table 1 of Paper 2. 
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In Figure 9 we plot the relative bias values bt = &,(T)/&(T) (open symbols) and bJ, = J3tg(~)/J3gg(~) 
(solid symbols) for each sample over a range of scales. We have divided the real-space cross- 
correlation of each sample with the parent APM galaxy sample (Paper 2) by the real-space cross- 
correlation function of the ‘all galaxies’ sample, hence the relative bias for the ‘all galaxies’ sample 
is defined to be unity. The error bars are determined from the one sigma scatter in bq from the nine 
bootstrap-resampled versions of the survey data. Given that our estimates of t(r) are unreliable 
beyond T M 20h-‘Mpc, we see no obvious trend of relative bias with scale in the linear regime. We 
have therefore calculated the maximum-likelihood value of bt over the range 5-12 h-lMpc, a regime 
over which the assumption of linear bias seems reasonable and where our measurement errors are not 
too large. These values, along with the 95% confidence limits, are given in Table 3. We also show 
the relative bias bJ, measured at a separation of T = 17.8h-lMpc in this table. We see that low- 
luminosity galaxies (sample b), are only about one third as strongly clustered as middle-luminosity 
galaxies, in accordance with the findings of Paper 2. High luminosity galaxies (sample d) appear 
to be about thirty percent more strongly clustered than middle-luminosity galaxies, although the 
95% confidence limits do allow for no difference in clustering, again in accord with Paper 2. Early 
type galaxies (e) have a very similar bias parameter to luminous galaxies, whereas late type galaxies 
have a bias parameter midway between that of low and middle-luminosity galaxies. 

The parameter most commonly used for normalizing the power spectrum of clustering models and 
theories to observations is the variance of galaxy counts in 8h-lMpc radius spheres, (cri),, 

(17) 

We estimate (o:)~ by Monte-Carlo integration of the observed real-space correlation function for 
each of the galaxy samples using 500,000 randomly placed pairs of points inside an 8h-rMpc radius 
sphere. Results are given in Table 3. As we see from Figures 5 and 6, ((T:)~ may be mildly affected 
by non-linearity, and so we do not expect be and bJ, to be directly proportional to (~s)~. Note the 
significant difference in (o,“), for galaxies fainter than L* and those around L* and brighter. 

In Figure 10 we plot estimates of & ( p o en symbols) and PJ, (solid symbols) for each galaxy sample. 
In order to estimate p for galaxy sub-samples, we have measured the redshift-space cross-correlation 
function of the given galaxy sample with the all-galaxies sample using the estimator 

Here the subscript t denotes galaxies of specific type, g denotes all galaxies and T denotes random 
points (cf. eq. 6). Comparing this with the real-space cross correlation function [tg(r) gives an 
estimate of fi via equation (5). Once again, the error bars come from the scatter between bootstrap 
resamplings. Estimates of & and 95% confidence limits over the separation range 5-12 h-r Mpc are 
given in Table 3. Clearly, negative values or lower limits on p are not physically reasonable, but 
the upper limits are still useful. For instance, for bright galaxies (d) we can say that p < 0.9 with 
95% confidence. The value of ,f?J, at T z 17.8h-lMpc is also given in Table 3. 

Now, if the ‘true’ bias factor bime (ie. the bias with respect to the mass) is related to the relative 
bias factor by biNe = bobt, (so that b,-, is the bias factor for the ‘all galaxies’ sample) then the product 
b@ for each galaxy sample should be a constant equal to R0.6/b 0. While we do find some scatter 
in this quantity between the different samples, the results are consistent (R0.6/bo M 0.2-0.6) within 
the 95% confidence limits. 
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5 Conclusions 

We have used large and realistic N-body simulations to investigate the effects of non-linearity on 
two estimators for the quantity /3 (eqs. [4] and [5]) in 1 ow and high density models. We find that non- 
linearity affects the 2nd order spherical harmonic [z(s) of redshift space clustering to scales as large 
as 30h-lMpc. In contrast, the amplitude of the direction-averaged correlation function [c(s) is only 
weakly affected by non-linearity on scales T 2 5h-rMpc in the LCDM model and T 2 lOh-lMpc 
in the MDM model. Therefore the most practical method for constraining /3 with existing redshift 
surveys is by measuring the amplification of direction-averaged redshift space clustering over real 
space clustering. An alternative approach, modeling the non-linearity, has recently been used by 
Cole et al. (1995) and Fisher and Nusser (1996). Th ese authors also find that p 5 0.6 from 
independent data sets. 

Measuring the projected cross-correlation of Stromlo-APM galaxies with the parent APM survey 
galaxies enables a reliable determination of I(T) t o scales T 6 20h-lMpc. The ratio ~(s)/[(T) shows 
rather large scatter on scales 5-20 h-lMpc, but the integral Jz is less noisy than [(T) and on a scale 
T M 17.8/KIMpc, &(S)/&(T) p rovides the estimate ,0 = 0.48 f 0.12. A reasonable upper limit on 
p from this analysis is p 2 0.6. Given that the PJ, estimates on either side of T M 17.8h-lMpc are 
almost consistent with ,0 = 0, we regard our analysis as providing an upper limit of p ,$ 0.6, rather 
than an actual estimate of ,f3. Although a little lower than estimates of p from peculiar velocity 
analyses (eg. Hudson et al. 1995, who find ,f3 = 0.74 f 0.13), the largely unknown systematic errors 
in most current estimates of p means they are all fairly consistent. See Dekel (1994) or Strauss and 
Willick (1995) f or a review of recent measurements of /3. 

The Stromlo-APM survey is a powerful sample for constraining p since the large volume probed 
enables us to reliably measure redshift space galaxy clustering in the linear regime, whereas many 
previous analyses have been limited to measuring [( ) s in the non-linear regime. Cross-correlation 
with the fully-sampled APM galaxy survey enables us to measure [(T) much more accurately than 
using the angular correlation function w(e), and thus the technique of using the ratio [(s)/[(T) 

[or J3WJ3(T)I comes into its own for this survey. The most likely source of systematic error 
in this analysis is in the inversion of the projected correlation function s(a) to obtain the real 
space correlation function E(T). Comparison of the /3 determinations from the simulations using 
e(~) measured directly from the simulations and via inversion of the projected correlation function 
($3.2) suggests that any such error is comparable to or smaller than random errors. 

With linear theory and 2-point clustering statistics alone one cannot separate the contributions of 
R and b in p = R0.6/b. However, as Gaztaiiaga and Frieman (1994) have discussed, higher order 
correlations may be used to constrain biasing models. Their analysis of APM galaxies favours a 
linear bias parameter b x 1, although to be strictly self-consistent, one should allow for a non-linear 
bias model in non-linear perturbation theory, in which case one can always match the observed 
skewness of APM galaxy counts in cells by adjusting the non-linear bias parameters. Further work 
is clearly required in constraining possible biasing models. 

As we have seen in Paper 2, different classes of galaxy have different clustering properties, and so 
not all galaxies can have exactly the same biasing parameter. In particular, low-luminosity galaxies 
are about three times less strongly clustered than L* galaxies on large scales, and so bL* x 3b,p. 
An interesting test would be to see if high order clustering of low-luminosity galaxies also predicts 
a lower value of bias than for L* galaxies. 
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In conclusion, we find that a relatively low value of /3 is favoured by the Stromlo-APM data; our 
results appear to rule out an unbiased, R = 1 model. We thus conclude that R < 1 and/or that 
galaxies are positively biased, ie. more strongly clustered than the underlying mass distribution. 
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Tables 

Table 1: Power-law fits to real and redshift space clustering in the survey data and simulations. 

Sample 78 so % To 
Stromlo - APM 1.49 f 0.15 5.9 f 0.4 1.71 f 0.05 5.1 f 0.2 
LCDM 1.84f0.16 6.lf0.5 1.97f0.12 6.0f0.6 
MDM 1.37f 0.15 4.3 f 0.2 1.48f 0.09 3.9 f 0.9 

Notes.Ts and so are the power-law fit parameters to the correlation function in redshift space 
measured over the range 1.5-30 h-lMpc. yr and TO are the real-space power-law parameters over 

the range 0.2-20 h-‘Mpc. 

Table 2: Constraints on galaxy peculiar velocities (km s-‘) for survey data and simulations. 

Model Gaussian 143’2 Exponential 
u (w2p2 95% conf In(C) (w2)li2 95% conf In(L) (w’)~/~ 95% conf In(L) 

Survey Data 
1.0 383 89 756 -10.1 404 96 841 -9.9 438 101 1095 -9.9 
3.0 400 203 800 -3.1 446 219 889 -2.9 531 253 1081 -2.6 
5.0 406 98 832 -3.0 417 105 907 -2.9 459 112 1093 -2.9 
7.0 271 0 708 0.0 271 0 796 0.0 282 0 1040 -0.1 

LCDM Simulation 
1.0 473 443 504 -32.8 500 461 538 -20.7 569 519 631 -11.6 
3.0 452 388 524 2.8 475 405 554 2.3 533 447 634 -0.2 
5.0 228 153 299 7.5 234 155 311 7.4 247 158 336 7.1 
7.0 283 185 380 10.6 293 187 396 10.5 310 191 432 10.2 

MDM Simulation 
1.0 628 560 726 -0.5 698 610 788 3.6 847 743 975 5.3 
3.0 480 425 543 10.3 513 453 585 10.5 601 521 690 8.0 
5.0 472 395 566 8.2 498 409 601 7.2 552 448 691 4.9 
7.0 396 302 497 0.3 404 305 515 -0.7 430 313 560 -2.8 
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Table 3: Relative bias bt and bJ,, variance in 8h-lMpc cells (c$)~, and redshift space distortion 

factors & and PJ, for galaxy subsamples 

Type bt 95% conf bJ3 (49 Pe 95% conf PJS 
a All 1.00 1.00 1.00 l.OOf 0.00 0.89 f 0.05 0.36 -0.03 0.75 0.48 f 0.12 
b Faint 0.31 0.05 0.56 0.32f 0.18 0.40f 0.10 1.91 0.35 3.46 0.85 f 0.71 
c Middle 1.05 0.85 1.26 1.15f 0.13 1.08f 0.14 0.26 -0.12 0.65 0.59 f 0.29 
d Bright 1.34 0.78 1.89 1.45f 0.35 1.20 f 0.18 -0.11 -1.14 0.91 0.19 f 0.43 
e E&SO 1.39 0.83 1.95 1.36f 0.35 1.24% 0.27 0.44 -0.13 0.99 0.27f 0.59 
f Sp&Irr 0.78 0.62 0.95 0.87f 0.12 0.66f 0.05 0.30 -0.16 0.75 0.33f 0.45 
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Figure Captions 

Figure 1 A contour plot of the full redshift space correlation function ((a,~) measured from the 
Stromlo-APM Redshift Survey as a function of separation parallel (7r) and perpendicular (0) 

1 2 1 
to the line of sight and smoothed with a 

{ I 
2 4 2 smoothing filter. The contours are 
1 2 1 

plotted in fixed steps in log [ from -3 to 1. Solid contours show values c > 1, dashed contours 
show values 6 < 1 (s’.e. in the linear regime). 

Figure 2 Comparison of the Stromlo-APM (filled circles), LCDM (open circles) and MDM (open 
squares) correlation functions in (a) redshift space and (b) in real space. 

Figure 3 The redshift-space correlation function t(a, r) plotted as a function of separation 7r along 
the line of sight for four bins in projected separation CT. The points with error bars show [(a, 7r) 
calculated from (a) the Stromlo-APM survey, (b) the LCDM simulation and (c) the MDM 
simulation. The curves show predictions for three peculiar velocity distribution functions - 
see text for details. 

Figure 4 (a) The First th ree spherical harmonics for the redshift-space correlation function mea- 
sured from the LCDM simulations (symbols) and predicted by linear CDM theory (curves). 
Filled circles and the continuous line shows the direction-averaged correlation function (to). 
Star symbols and the dashed line show the negative of the quadrupole harmonic (-(2). Open 
circles and the dotted line show the hexadecapole harmonic (14). (b) As (a) for the MDM 
simulations. & is very noisy for this set of simulations and so is not shown here. 

Figure 5 Estimates of /3 as a function of separation from the LCDM simulations using equation (5), 
(a) uses ‘direct’ estimation of t(s) and t(~), (b) uses the projected cross-correlation estimate 
of [(T) (Eq. 7). The open symbols show ,B estimated from the ratio [(s)/[(T) and the solid 
symbols show p estimated from the ratio J~(s)/J~(T). The horizontal unbroken line shows 
the maximum-likelihood fit to /Q over the range indicated and the dotted lines show 95% 
confidence limits on this 0 estimate. The horizontal dashed line indicates the actual p = 0.38 
for these simulations. 

Figure 6 As Figure 5 but for the MDM simulations. 

Figure 7 The 0th and 2nd order spherical harmonics of the redshift-space correlation function 
measured from the Stromlo-APM survey. The curves are from LCDM linear theory (light 
lines) and MDM theory (heavy lines). 

Figure 8 Estimates of p as a function of separation for the Stromlo-APM survey data from the 
ratio I/ (open circles) and &(S)/&(T) (filled circles). 

Figure 9 Relative bias factors for subsamples of the Stromlo-APM Survey, determined from the 

ratio t&)/&m(T) ( o P en circles) and Jatg(~)/Jsgg(~) (fin e circles). The horizontal lines show d 
the maximum likelihood fit to Etg(r)/lgg( T over the range 5-12 h-IMpc; the dashed lines ) 
show the 9570 confidence limits. 

Figure 10 Estimates of p for subsamples of the Stromlo-APM Survey, determined from the ratio 
ttg(s)/[tg(T) (open circles) and Jstg(s)/J3tg(~) (filled circles). 
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